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ABSTRACT 

With the advent of grid technologies, scientists and engineers are building more and more 
complex applications to utilize distributed grid resources. The core grid services provide a path 
for accessing and utilizing these resources in a secure and seamless fashion. However what the 
scientists need is an environment that will allow them to specify their application runs at a high 
organizational level, and then support efficient execution across any given set or sets of resources. 
We have been designing and implementing ScyFZow, a dual-interface architecture (both GUT and 
APT) that addresses this problem. The scientisther specifies the application tasks along with the 
necessary control and data flow, and monitors and manages the execution of the resulting 
workflow across the distributed resources. In this paper, we utilize two scenarios to provide the 
details of the two modules of the project, the visual editor and the runtime workflow engine. 

INTRODUCTION 
NASA's Earth and Space scientists are finding that the raw data being acquired 

and downloaded by satellites and deepspace missions is accumulating on data archive 
systems much faster than it can be transformed and processed for scientific experiments. 
In addition, scientists lack the visual tools that might allow them to rapidly design the 
appropriate transformation sequences for their data. The requirements for such a tool 
include: rapid visual prototyping of transformation sequences, the designation of 
processing pathology handling, the ability to automatically apply designated workflows 
to the processing of large sets of raw data files, the collation and post-processing of 
results, the advance and repeated scheduling of processing sequences, and the ability to 
easily modify these data transformation sequences: to accommodate changes in the intent 
of experiments, and to rapidly test new hypotheses. To provide scientists with a 
capability that addresses these needs, in this task we are building a GUI-enhanced tool, 
ScyFZow, that will allow flow-chart-like assembly of data acquisition and transformation 
steps, and will then instantiate this processing. This tool will support all stages: the 
automated acquisition of raw data, the distributed processing of this data, and the final 
archiving of results. In this paper, after a brief overview of the overall architecture, we 
describe two of the modules, the visual editor and the runtime engine, in more detail. We 
present two usage examples to describe the two modulcs. 
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Motivating Scenarios 

In t h s  section, we present two scenarios that represent typical problems faced by 
scientists who need to process large amounts of information, andor execute large 
programs, in a distributed environment that might range from workstations to super- 
computers. These two cases are modeled in a ScyFlow chart; see Figures 1 and 2 below. 

Scenario 1: Parametric Study: A CFD scientist wishes to vary the position of flaps on an 
aerospace vehicle geometry, and then apply a CFD flow solver code to the resulting 
geometry configurations for varying values of Reynolds number (aircraft speed) and 
alpha (angle of attack). The scientist may wish to run this workflow several times, 
changing configurations and pammeter values; alsoj the scientist may wish to intmdnce 
some sort of test that will modify the parameter values themselves in order to “zero-in” 
on parameter sets of interest, or eliminate certain configurations that fail to meet specified 
criteria. Note that this represents 2 levels of parameterization: “i” geometry 
configurations, followed by (for each configuration) “f’ (values of Reynolds number) 
times “k” (values of alpha), where total runs = i + (i * j * k); where there are i runs for the 
first level, then i * j * k runs for the second level, and the first level represents a meshing 
program that varies the flap positions, and the second level represents a computation- 
intensive CFD flow solver to be run on a supercomputer system. In our example, let i = 3, 
j = 3 and k = 4, producing a total of 36 input data sets and 36 jobs, one for each input set. 

Scenario 2: Processing ofMars data: A scientist working on Mars mission data needs to 
download HDF files (latitude and longitude based) as they become available on agency 
web sites. These files typically contain some kind of gathered spectral data in two- 
dimensions; where the first dimension is radar, light, or heat, etc., and the second 
dimension is a lat-long location for each of the first dimension values. In general, there 
will be many small HDF files, and a significant proportion of these HDF files will have 
problems or errors: for example, misaligned “corners” of lat-long sections, non-numerical 
values in numerical fields, or errors in data values that can be discovered and eliminated 
by some mathematical method, etc. After downloading, the files need to be examined for 
errors, and then each file with a particular error will need to be processed by the 
appropriate “fixer” code. Then the corrected files are “stitched” together into a single 
large file of corrected spectral data, which is then subjected to a compute-intensive 
spectral processing method. Typically, the results of the processing will be displayed as 
contours, or color-mapping, overlaid on a map of the area of interest, which is delimited 
by the composited set of lat-long values. 

OVERALL ARCHITECTURE 
We are developing ScyFlow as part of a larger set of component applications. In 

order to allow our component applications to “talk” to each other, we have created a 
“container” application called ScyGate that manages and coordinates the interactions 
between the components. Initially, these contained applications will be: 

ScyFZow: workflow editor, generator and execution engine (the focus of this 
paper) ; 
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Scyhb:  parameter study capability (next generation of ILab[l], with some 
additions so that it can be used by ScyFlow); 

UniT: (Universal File Translator) program that generates translation code for 
transforming one data format into another data format; 

FiZeTester. P e r m  utility that generates a Per1 program that will parse any given 
ASCII data file and return designated values - can be used condition testing 
within a workflow. 

Any additional modules: our architecture will allow additional component 
applications to be incorporated into the system at both an icon-based (data 
configuration) level and a programming-based level (use of a separate Registry 
API). 

A ScyGate local server runs in the background and component applications open sockets 
to this server. Shared data is kept in a “Registry” (which is both an data tree object and a 

environment is to provide a framework for the deployment of several related applications, 
and to extend this framework in two ways: first, allow users to attach their own icons to 
the ScyGate “icon corral” so that they can be launched from ScyGate (and, possibly, 
passed as input some file paths known to ScyGate); second, to allow developers to write 
code that attaches to the Registry server, so that the code produced by these developers 
can also “talk” to other ScyGate applications. The framework also makes it easy for us to 
handle the updating of individual codes, since version information is one of the things 
handled by the Registry. 
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Architecture of ScyFlow 

ScyFlow is an environment that supports the specification, execution and monitoring of 
workflows. It consists of two major components: 

ScyFlowVis provides the visual interface for specifying workflows. It also 
translates the visual flow graph into internal formats (XML, dependency list, 
pseudo-code) for storing and for communicating with the other components. The 
GUI can also be used as a visual interface to monitor the execution of workflows. 

ScyFlowEngine provides the set of services required for the overall execution of 
the workflow across distributed grid resources, talung into account the specified 
control and data dependencies. A set of APIs will allow applications other than 
ScyFlowVis to also connect to the ScyFlowEngine in order initiate and monitor 
executions of worlcflows. 



Definitions of ScyFlow Terminology 

Below we define some terms that we use for data objects in the context of ScyFlow. 

Process: Basic unit of execution in any workflow; can be any type of script, or any type 
of compiled file, or a single command. The Process Object contains the data necessary to 
execute any given process - the type of Process, paths to necessary files and any other 
required data: command line arguments, special queue directives, etc. 

Experiment: A “railroad” sequence of processes (no control structures) that is to be 
executed sequentially. Any process in an Experiment can be parameterized by a sequence 
of input values. The cross product of the input values gives rise to a set of independent 
input parameters that can be executed independently, essentially as “job” units of an 
experiment in a parametric study. The Experiment Object contains pointers to the 
constituent Process objects, along with information about the parameterized inputs such 
as the input files, the locations within the files and the values to be used for these 
locations. For the purpose of explaining ScyFlow, an Experiment and a Process can be 
regarded as interchangeable, since an Experiment is just a set of Processes; we use the 
term “executable” to interchangeably refer to an Experiment or a Process. 

WorkFZow: A set of Experiments andor Processes along with any control structures and 
data dependencies necessary for executing the subtasks. Workflow objects are really 
“container” objects since they point to other Experiment and Process objects, but they 
also contain control flow information in the form of specific flow structures. All 
executable data, and control flow data, is represented as vertices in a directed graph, 
where each vertex is either an executable, or a control structure (Splitpath, Join, Cycle, or 
Pause). 

Job: A Job object represents a single input data set, attached to an associated workflow 
graph or Experiment object. Thus, an Experiment will result in multiple Jobs, one for 
each execution of the parameterized data set. A Workflow will have at least one Job, and 
each Job represents one traversal through the Workflow directed graph. A Workflow that 
has no Experiments (parameterized processes) will give rise to one Job in which (some 
sub-set) of Processes will be executed only once; a Workflow with Experiments will have 
many Jobs, and each Job will execute (some sub-set of) Workflow executable vertices 
once. (Note that in each case the sub-set of executed Experiments or Processes may 
include all Workflow vertices.) 

IMPORTANT: an Experiment object contains data flow information, i.e., information 
concerning parameterization, whereas a Process does not. ScyFlow’s data flow 
specification - as far as parameterization goes - takes place at the Experiment level. 
However, Splitpath and Join control structures at the ScyFlow level can cause data sets 
(iobs) to be multiplied or joined; when the workflow is executing, the ScyFlow execution 
manager keeps track of the data set totals, applying control flow variants to parameterized 
set specifications, in a manner completely transparent to users. The ScyFlow monitor 
display will feature data set totals, since these are determined at run time if any control 



SCYFLOW VISUAL INTERFACE: ScyFZowViS 
The ScyFlow system provides a visual interface for specifying the graph that 

represents the WorkFlow. Along with manipulating such graphs (e.g., creating, storing, 
modifymg), a companion interface allows users to utilize the workflow graph to monitor 
the progress of the execution of the workflow. In this section we focus on the 
specification interface, providing details of the types of workflows that can be specified 
within ScyFlow. 

At the top level, the directed graph in ScyFlow has been designed to model the flow of 
operations only; data specification appears within the context of the Processes and 

(Experiments or Processes), and 4 for control operations: Splitpath, Join, Cycle, and 
Pause; these are represented within the directed graph display by different icons. There 
are no vertices representing data, only one type of vertex which can represent operations 
upon data. Arrows indicate the flow of operations. 
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Data Dependencies 

In order to minimize user input, data dependencies are handled in the following ways. 
First, d.t. depexk~cies between ~ ~ K P S S P S  aze gperifipx1 within ScyLab merely by the 
order in which Processes are entered (this order can be easily modified by user.) If 
Process B is entered after Process A, ScyLab code “assumes” that B is dependent on 
some files output by A, and the execution code handles output files from A accordingly. 
A similar model is followed by ScyFlow; whenever user adds a vertex to the directed 
graph, that vertex is either the first vertex (no dependencies), or is being added to a pre- 
existing vertex. For example, if user adds vertex B to vertex A, ScyFlow also assumes 
that B is dependent upon A, and that A must be executed before B can be executed. 

Second, between executables in a Workflow, at the ScyLab level user must mark certain 
Process-specific files as “Input to Next Experiment . . .’, This information is used by the 
ScyFlow execution manager to assure that essential files are correctly copied and/or 
archived in the sequence of directed graph specified executions. For user’s convenience 
ScyFlow will include a data-dependency modeling display that will allow user to easily 
view and edit the data dependencies between portions of a Workflow; ScyLab will 
include a similar feature. The MIS for both ScyLab and ScyFlow will include functions 
that will retum or change this information. 

Control Vertices in ScyFlow 

The small number of types of vertices in ScyFlow was achieved by making the control 
vertex types represent sets of similar operations. For instance, there is only one Cycle 
vertex, but the Cycle Properties contains options which can be set to execute different 
kinds of loops: counter loops, “while” loops, and “do . . . while” (or “do . . . until”) loops. 

A Splitpath vertex has similar options. It can have no test at all: this is an “AND” 
condition that indicates that the output from the previous executable should be used as 
input for ALL the following executables. This option multiplies the Jobs (data sets) and 
may be set to execute simultaneously on different systems. Secondly, the SplitPath can 



have a test based on either the return value of a program, or the existence or non- 
existence of a file; this is an “OR’ condition. The return value of the specified OR 
condition test is then used to determine the following path, which will be the only path 
(out of all the possible paths) that gets executed for any given data set. Note that an 
“AND” Splitpath introduced at any point in a workflow - including the beginning of a 
Workflow - can also have the effect of starting up separate simultaneous path(s) of 
execution at that point. 

The Join vertex is simpler: there are only two types of Join (1) an “AND” Join, where 
execution at the Join must wait for input from all previous paths in order to continue; (2)  
an “OR’ Join, where input from any previous path can be passed to next executable, with 
no waiting. (Note in future we wlii probabiy add some Join options concerning fiie 
staging, depending on user requirements; for example, user may wish to copy/move/mark 
sets of files from previous executables in some way required by the executable following 
the Join vertex.) 

/ 

The Pause vertex is procedural only; it is intended to provide for cases where some data 
examination has to be performed before continuing the execution of the Workflow, or to 
provide for pathological cases, etc. Pause options include email, beep, etc.; a special 
Pause pop-up display will be provided so that users can examine paused data sets (Jobs) 
and mark these for discarding or continuing through the workflow. 

In ScyFlow, SplitPath and Join vertices are always labeled with their types: “OR’ or 
“AND”, appearing in different colors. This disambiguates the meaning of these vertices, 
as far as control flow is concerned, in any given display. An alternative to the “OR’ and 
“AND” labels might have been to have different types of vertices, drawn in different 
shapes, representing the varieties of Split and Join operations; but, this would have made 
the display more confusing, and would probably have required (in order to carry out such 
a design decision to its “logical” conclusion) many more different shapes and types of 
icons in order to distinguish various operations. 

The Data Train Analogy 

The closest “real-life” analogy to ScyFlow’ s modeling notation is to compare the 
Workflow transit of the directed graph to the path a train would take through a series of 
railroad switches, while visiting several destinations before the end of its journey. Each 
separate train is a Job (or data set); each stop is an executable where data is unloaded and 
processed, and then different data is loaded back onto the train. Splitpath vertices are 
switches to several other tracks; Join vertices are switches that join two or more sets of 
tracks. Some options set by ScyFlow users can cause one train to get cloned (copied) into 
two or more trains; and, one or more trains can “wait” at Join vertices until other trains 
arrive, so that all Join-specified trains can merge back into one train. In the simplest 
SplitPath case, with only OR conditions in any SplitPath vertices, a train sets out on a 
journey but its exact path and destination are not determined until each SplitPath test is 
done and the train is sent down one path instead of another. (Note that this presumes an 
exclusive OR only; ScyFlow does not currently model an inclusive OR, but this will be 
added.) 

i 



Design Motivation 

The motivation behind our design is as follows: it was important to create a notation 
system that was both easy to understand, and at the same time flexible and powerful 
enough to model complex workflows. As with most (if not all) directed graph problems, 
granularity is a very important issue; the ScyFlow design would not be successful if the 
ScyFlow workflow charts are ambiguous or too difficult to create and understand. The 
problem is that any representation of a complex real-life workflow problem will expand 
to be so visually complex as to be unsuitable for use and for visual “cues” about 
structure. Even simple workflows can be very difficult to model. In terms of 
programming implementation this is an ongoing problem, made even worse by the 
graphhi difficuities of creating a dispiay where two or more vertices do not overiay each 
other. Our aim was to create a more visually intuitive display by simplifying the 
workflow representation: we have no data vertices and the number of vertex types has 
been minimized. We make the assumption that users will impose their own complexity 
on any given problem; it is important to keep the basic design as simple as possible in 
order to accommodate this. The “collapsdexpand’ paradigm for a graphical interface 
needs to be used as much as possible, so that detail can be hidden in order to avoid a very 
large and overly complex display. ScyFlow implements this by allowing an executable 
vertex to “expand” into a ScyLab Experiment which can be editedcreated separately in 
ScyLab, then collapsed back into a ScyFlow executable vertex. 

ScyFlow Representations of the User Scenarios 

We now describe how the two scenarios presented earlier would be represented using the 
ScyFlow notation. 

Figure 1: ScyFlow CFD user scenario 

Figure 1 shows the ScyFlow workflow representation of the first user scenario, multiple 
levels of parameterization. Note that this workflow is a “railroad”, that is, a straight line: 
this is because there are no control structures in this workflow; no decisions are made at 
run time, and all possible data sets (Jobs) will be executed since there will be no tests 



executed to eliminate any of them. The first executable, labeled “Flaps”, would produce 3 
geometries with varying flap positions; since this is not compute-intensive, user might 
run it locally, perhaps on a workstation. The following “Pre-Processing” might involve 
fixes and/or changes to the geometry grids; also, local. The FlowSolver would probably 
be executed on a supercomputer; and the post-processing and graphics might run on some 
set of graphical systems. 

Figure 2: ScyFlow Mars data user scenario 

Figure 2 illustrates the second user scenario. The user would construct a ScyFlow 
Workflow where the first executable is a “web scraper’’ that will automatically download 
files from a site according to some constraints (e.g., all new files since a certain date, all 
files in some directory, etc.). Note that the ScyGate suite of utilities will contain a 
program that will generate this sort of program or script, either in Per1 or in Korn shell.) 
The second vertex in user’s workflow would be a SplitPath control structure vertex, that 
will run a program that will apply several tests to each downloaded file, and return certain 
values indicating the appropriate “fixer” program that should be run on each file. The 
SplitPath vertex will have several branches, one for each fixer program. Then, all paths 
leaving the Splitpath vertex will be followed by a Join control vertex with an “OR’ 
condition, indicating that any data set processed by any of the paths following the 
SplitPath vertex can then be passed to the next processing node following the Join control 
vertex. Following the Join vertex, the user would add an executable that would take all 
“fixed” files as input, and use them to composite a large file. Adding another SplitPath 
test would determine whether the composition had accumulated a sufficient number of 
files to continue to the next executable. Once this test succeeds, the next executable 
would apply a compute-intensive spectral decomposition operation to the large data file, 
presumably on some available supercomputer resource. Finally, a graphics post-processor 
executable would get the results of the spectral program, and output graphics files for 
display. Each stage of this Workflow might or might not be accompanied by archiving 
instructions which will be performed at run-time by the Workflow execution manager. 
Note that the second SplitPath test has only one path, but, there is an “implied” first path 



whch is to do nothing unless the Splitpath test succeeds. The first ‘WebScraper’, 
executable would continue to send data sets down the workflow, but the final spectral and 
graphics executables will not be executed until the final test succeeds. 

GUI vs. API Operation of SCyFlow and ScyLab: Automated Scripting 

Both ScyFlow and ScyLab will provide a data-file based API, plus the ability to generate 
this file from any GUI-constructed Workmow or Experiment object. This gives 
programmerdusers the ability to “script7’ any given execution of a WorkFlow or 
Experiment, since the generated data file - which will be used as input for the API - can 
be parsed, and re-run, by other programming modules. 

SCYFLOW RUNTIME SYSTEM: ScyFlowEngine 
The workflow execution engine consists of two components. The fust of these is the 
dependency handler, which expands compiled dependency data. The second component 
of the execution engine is the server/sub-server architecture, which spawns the work 
indicated by the directed graph and subsequently monitors the progress of jobs and 
cieiermines wilicii & ~ C I I & I I ~  wuik iiiily i~ iuii fioiii ;“le coiiipletkii-siii?i.i~ i i i f ~ ~ l ~ t i ~ i i  ~f 
finished dependencies. 

Machine A 

Machine A 

Machine B 

Figure 3: Operation of the WorkFlow Execution Manager 

The workflow execution engine is a server/sub-server architecture. It utilizes socket 
communications for the transfer of job instructions from the server to the sub-servers and 
for transfer of job completion information from the sub-servers to the server. The sub- 
servers are basically “dumb” and do no dependency analysis or runtime decisions. The 
server contains the directed-graph compiler, which produces a dependency list. This list 
is used to determine which components of the user work may be processed (dependents) 
once any prior component (a dependency) has been successfully completed. Note that 
currently, control flow capability has been developed and is working, though both control 
and data flow specification are done in the GUI graph editing. Thus each graph traversal 
implies a single path of execution of user work through the graph. The server also 
contains the apparatus which spawns sub-servers onto user- or resource-broker- 
designated compute machines. The spawning of a process can be accomplished by either 
ssh, gsissh, or the NAS JobManager. Once a sub-server has been spawned onto a 



designated resource, the sub-server will thereupon open a connection to the server's 
listener-socket and request from it the instructions to be performed. The server is based 
on a multiplexing architecture and can simultaneously handle any number of user jobs 
flowing through any number of graphs whose vertices can be partitioned onto any 
number of remote resources. At this time, each user job is serviced by one sub-server, 
but our architecture will pennit a single sub-server to service multiple jobs running on its 
particular resource. Because the sub-servers communicate back to the server 
immediately with any vertex completion statuses, monitoring of job status is real-time. 

Sub-server requests work 
Scy Fiow 
WorkFlow 
Engine 

Su b-Server 

n ScyFlow 
WorkFlow 
Engine 
(server) 

Sub-server forks/execs 
job handler, 

then drop-down enters (Sub-server) 
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loop. When 
work done, job 
handler notifies sub-server, w 
which exits listen-socket loop 

n Sub-server reDorts iob 
completion status, ' 
reauests new work Engine 
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Figure 4: WorkFlow Life Cycle 

Here is a detailed look at the life cycle of a workflow graph in our serverhub-server 
architecture. Once the graph has been constructed (either by the GUI or API) and user- 
process attributes given appropriate values, the GWAPI will open a connection to the 
server listener-socket and pass to it a serialized graph object or graph file-package 
location. The server then compiles the graph and produces a dependency list for the 
graph vertices. Then, the first dependent with no dependencies is chosen and a 
"HostServer" is spawned onto the remote machine indicated for this vertex (chosen either 
by user designation or resource-broker). The HostServer opens a connection to the 
server, identifies itself by JobName and requests work to be performed. The server 
passes to it instruction(s) to perform. The sub-server chooses an appropriate ')ob 
handler" to perform the work and thereupon forks and execs this job handler, thereby 
allowing the sub-server to avoid blocking while the work is being performed. The sub- 



server opens its own drop-down listener-socket loop and waits for either completion 
status from its job handler or for possible shutdown/discontinue requests from the server. 
When the job handler has completed the user work and notified the sub-server, the sub- 
server exits its listener loop and reports completion status for this job to the server. The 
server updates its jobhertex data object with completion or failure status for the vertex, 
and then determines, using the dependency list, which next dependent task may be run, if 
any. If the next valid dependent vertex is on the same machine as last, the reporting sub- 
server is given this work, otherwise the sub-server is given shutdown instructions, and a 
new sub-server is spawned onto the resource selected for this next vertex. Subsequently, 
this new sub-server will open a connection to the server and obtain the vertex work, etc. 

Related Work 

Some related projects are: SciRun,-developed at the University of Utah and used for a variety 
of applications including molecular biology [2]; Cantata / Khoros, commericall y developed 
in Utah and used for image processing[3]; UNICORE, developed in Germany as a generic 
workflow package[4]; and DAGman, part of the CONDOR project, developed by Myron 
Livny at the University of Chicago [5]. 

Conclusions 

The new ScyFlow system presents two innovations: a new design for workflow modeling, 
and the ability to handle both control flow and data flow within any given workflow. This 
powerful and flexible system provides generic capability for creating and running workflows, 
without being domain-specific; in addition, ScyFlow requires absolutely no 
~‘instrumentation’’ of any participating codes, that is, users can run ScyHow without doing 
any programming whatsoever. Our object oriented design restores state for workflow data 
sets, since WorkFlow objects are easily serialized to/from files, and transported over sockets. 
ScyFlow’s “scripting” ability (the MI, Applications Programming Interface) is not only 
convenient for users - since WorkFlow objects can be “dumped” to a script file and used to 
re-run the workflow - but is also usable by external programming modules for deployment in 
many distributed environments. 
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